Lemma 10.107.9. Let $R \to S$ be an epimorphism of rings. Then
$\mathop{\mathrm{Spec}}(S) \to \mathop{\mathrm{Spec}}(R)$ is injective, and
for $\mathfrak q \subset S$ lying over $\mathfrak p \subset R$ we have $\kappa (\mathfrak p) = \kappa (\mathfrak q)$.
Comments (0)