Lemma 10.107.8. If $k \to S$ is an epimorphism and $k$ is a field, then $S = k$ or $S = 0$.
Proof. This is clear from the result of Lemma 10.107.7 (as any nonzero algebra over $k$ is faithfully flat), or by arguing directly that $R \to R \otimes _ k R$ cannot be surjective unless $\dim _ k(R) \leq 1$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)