Lemma 3.9.5. Let $S$ be a scheme. Let $S = \bigcup _{i \in I} S_ i$ be an open covering. Then $\text{size}(S) \leq \max \{ |I|, \sup _ i\{ \text{size}(S_ i)\} \} $.
Proof. Let $U \subset S$ be any affine open. Since $U$ is quasi-compact there exist finitely many elements $i_1, \ldots , i_ n \in I$ and affine opens $U_ i \subset U \cap S_ i$ such that $U = U_1 \cup U_2 \cup \ldots \cup U_ n$. Thus
Moreover, it shows that the set of affine opens of $S$ has cardinality less than or equal to the cardinality of the set
Each of the sets inside the disjoint union has cardinality at most $\sup _ i\{ \text{size}(S_ i)\} $. The index set has cardinality at most $\max \{ |I|, \aleph _0\} $, see [Ch. I, 10.13, Kunen]. Hence by [Lemma 5.8, Jech] the cardinality of the coproduct is at most $\max \{ \aleph _0, |I|\} \otimes \sup _ i\{ \text{size}(S_ i)\} $. The lemma follows. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: