Lemma 7.30.7. Assume $\mathcal{C}$ and $s : \mathcal{G} \to \mathcal{F}$ are as in Lemma 7.30.6. If $\mathcal{G} = h_ V^\# $ and $\mathcal{F} = h_ U^\# $ and $s : \mathcal{G} \to \mathcal{F}$ comes from a morphism $V \to U$ of $\mathcal{C}$ then the diagram in Lemma 7.30.6 is identified with diagram (7.25.8.1) via the identifications $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/V) = \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ V^\# $ and $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) = \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $ of Lemma 7.25.4.
Proof. This is true because the descriptions of $j^{-1}$ agree. See Lemma 7.25.9 and Lemma 7.30.6. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)