The Stacks project

Lemma 7.25.9. Notation $\mathcal{C}$, $f : V \to U$, $j_ U$, $j_ V$, and $j$ as in Lemma 7.25.8. Via the identifications $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/V) = \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ V^\# $ and $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) = \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $ of Lemma 7.25.4 we have

  1. the functor $j^{-1}$ has the following description

    \[ j^{-1}(\mathcal{H} \xrightarrow {\varphi } h_ U^\# ) = (\mathcal{H} \times _{\varphi , h_ U^\# , f} h_ V^\# \to h_ V^\# ). \]
  2. the functor $j_!$ has the following description

    \[ j_!(\mathcal{H} \xrightarrow {\varphi } h_ V^\# ) = (\mathcal{H} \xrightarrow {h_ f \circ \varphi } h_ U^\# ) \]

Proof. Proof of (2). Recall that the identification $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/V) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ V^\# $ sends $\mathcal{G}$ to $j_{V!}\mathcal{G} \to j_{V!}(*) = h_ V^\# $ and similarly for $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}/U) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $. Thus $j_!\mathcal{G}$ is mapped to $j_{U!}(j_!\mathcal{G}) \to j_{U!}(*) = h_ U^\# $ and (2) follows because $j_{U!}j_! = j_{V!}$ by Lemma 7.25.8.

The reader can now prove (1) by using that $j^{-1}$ is the right adjoint to $j_!$ and using that the rule in (1) is the right adjoint to the rule in (2). Here is a direct proof. Suppose that $\varphi : \mathcal{H} \to h_ U^\# $ is an object of $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ U^\# $. By the proof of Lemma 7.25.4 this corresponds to the sheaf $\mathcal{H}_\varphi $ on $\mathcal{C}/U$ defined by the rule

\[ (a : W \to U) \longmapsto \{ s \in \mathcal{H}(W) \mid \varphi (s) = a\} \]

on $\mathcal{C}/U$. The pullback $j^{-1}\mathcal{H}_\varphi $ to $\mathcal{C}/V$ is given by the rule

\[ (a : W \to V) \longmapsto \{ s \in \mathcal{H}(W) \mid \varphi (s) = f \circ a\} \]

by the description of $j^{-1} = j_{U/V}^{-1}$ as the restriction of $\mathcal{H}_\varphi $ to $\mathcal{C}/V$. On the other hand, applying the rule to the object

\[ \xymatrix{ \mathcal{H}' = \mathcal{H} \times _{\varphi , h_ U^\# , f} h_ V^\# \ar[rr]^-{\varphi '} & & h_ V^\# } \]

of $\mathop{\mathit{Sh}}\nolimits (\mathcal{C})/h_ V^\# $ we get $\mathcal{H}'_{\varphi '}$ given by

\begin{align*} (a : W \to V) \longmapsto & \{ s' \in \mathcal{H}'(W) \mid \varphi '(s') = a\} \\ = & \{ (s, a') \in \mathcal{H}(W) \times h_ V^\# (W) \mid a' = a \text{ and } \varphi (s) = f \circ a'\} \end{align*}

which is exactly the same rule as the one describing $j^{-1}\mathcal{H}_\varphi $ above. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 04IL. Beware of the difference between the letter 'O' and the digit '0'.