Lemma 34.7.7. Let $\mathit{Sch}_{fppf}$ be a big fppf site as in Definition 34.7.6. Let $T \in \mathop{\mathrm{Ob}}\nolimits (\mathit{Sch}_{fppf})$. Let $\{ T_ i \to T\} _{i \in I}$ be an arbitrary fppf covering of $T$.
There exists a covering $\{ U_ j \to T\} _{j \in J}$ of $T$ in the site $\mathit{Sch}_{fppf}$ which refines $\{ T_ i \to T\} _{i \in I}$.
If $\{ T_ i \to T\} _{i \in I}$ is a standard fppf covering, then it is tautologically equivalent to a covering of $\mathit{Sch}_{fppf}$.
If $\{ T_ i \to T\} _{i \in I}$ is a Zariski covering, then it is tautologically equivalent to a covering of $\mathit{Sch}_{fppf}$.
Comments (0)
There are also: