The Stacks project

64.29 Cohomology of curves, revisited

Let $k$ be a field, $X$ be geometrically connected, smooth curve over $k$. We have the fundamental short exact sequence

\[ 1 \to \pi _1(X_{\overline{k}}, \overline\eta ) \to \pi _1(X, \overline\eta ) \to \text{Gal}(k^{^{sep}}/k) \to 1 \]

If $\Lambda $ is a finite ring with $\# \Lambda \in k^*$ and $M$ a finite $\Lambda $-module, and we are given

\[ \rho : \pi _1(X, \overline\eta ) \to \text{Aut}_{\Lambda }(M) \]

continuous, then $\mathcal{F}_\rho $ denotes the associated sheaf on $X_{\acute{e}tale}$.

Lemma 64.29.1. There is a canonical isomorphism

\[ H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )=(M)_{\pi _1(X_{\overline{k}}, \overline\eta )}(-1) \]

as $\text{Gal}(k^{^{sep}}/k)$-modules.

Here the subscript ${}_{\pi _1(X_{\overline{k}}, \overline\eta )}$ indicates co-invariants, and $(-1)$ indicates the Tate twist i.e., $\sigma \in \text{Gal}(k^{^{sep}}/k)$ acts via

\[ \chi _{cycl}(\sigma )^{-1}.\sigma \text{ on RHS} \]

where

\[ \chi _{cycl} : \text{Gal}(k^{^{sep}}/k) \to \prod \nolimits _{l\neq char(k)}\mathbf{Z}_ l^* \]

is the cyclotomic character.

Reformulation (Deligne, Weil II, page 338). For any finite locally constant sheaf $\mathcal{F}$ on $X$ there is a maximal quotient $\mathcal{F}\to \mathcal{F}''$ with $\mathcal{F}''/X_{\overline{k}}$ a constant sheaf, hence

\[ \mathcal{F}'' = (X\to \mathop{\mathrm{Spec}}(k))^{-1}F'' \]

where $F''$ is a sheaf $\mathop{\mathrm{Spec}}(k)$, i.e., a $\text{Gal}(k^{^{sep}}/k)$-module. Then

\[ H_ c^2(X_{\overline{k}}, \mathcal{F})\to H_ c^2(X_{\overline{k}}, \mathcal{F}'')\to F''(-1) \]

is an isomorphism.

Proof of Lemma 64.29.1. Let $Y\to ^{\varphi }X$ be the finite étale Galois covering corresponding to $\mathop{\mathrm{Ker}}(\rho ) \subset \pi _1(X, \overline\eta )$. So

\[ \text{Aut}(Y/X)=Ind(\rho ) \]

is Galois group. Then $\varphi ^*\mathcal{F}_\rho =\underline M_ Y$ and

\[ \varphi _*\varphi ^*\mathcal{F}_\rho \to \mathcal{F}_\rho \]

which gives

\begin{align*} & H_ c^2(X_{\overline{k}}, \varphi _*\varphi ^*\mathcal{F}_\rho ) \to H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )\\ & =H_ c^2(Y_{\overline{k}}, \varphi ^*\mathcal{F}_\rho )\\ & =H_ c^2(Y_{\overline{k}}, \underline M) = \oplus _{\text{irred. comp. of } \atop Y_{\overline{k}}}M \end{align*}

\[ \mathop{\mathrm{Im}}(\rho ) \to H_ c^2(Y_{\overline{k}}, \underline M) = \oplus _{\text{irred. comp. of } \atop Y_{\overline{k}}} M \to _{\mathop{\mathrm{Im}}(\rho ) \text{equivalent}} H_ c^2(X_{\overline{k}}, \mathcal{F}_{\rho }) \to ^{\text{trivial } \mathop{\mathrm{Im}}(\rho ) \atop \text{action}} \]

irreducible curve $C/\overline{k}$, $H_ c^2(C, \underline M)=M$.

Since

\[ {\text{set of irreducible } \atop \text{components of }Y_ k} = \frac{Im(\rho )}{Im(\rho |_{\pi _1(X_{\overline{k}}, \overline\eta )})} \]

We conclude that $H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )$ is a quotient of $M_{\pi _1(X_{\overline{k}}, \overline\eta )}$. On the other hand, there is a surjection

\[ \mathcal{F}_\rho \to \mathcal{F}'' = {\text{ sheaf on } X\text{ associated to } \atop (M)_{\pi _1(X_{\overline{k}}, \overline\eta )}\leftarrow \pi _1(X, \overline\eta )} \]

\[ H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )\to M_{\pi _1(X_{\overline{k}}, \overline\eta )} \]

The twist in Galois action comes from the fact that $H_ c^2(X_{\overline{k}}, \mu _ n)=^{\text{can}} \mathbf{Z}/n\mathbf{Z}$. $\square$

Remark 64.29.2. Thus we conclude that if $X$ is also projective then we have functorially in the representation $\rho $ the identifications

\[ H^0(X_{\overline{k}}, \mathcal{F}_\rho ) = M^{\pi _1(X_{\overline{k}}, \overline\eta )} \]

and

\[ H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho ) = M_{\pi _1(X_{\overline{k}}, \overline\eta )}(-1) \]

Of course if $X$ is not projective, then $H^0_ c(X_{\overline{k}}, \mathcal{F}_\rho ) = 0$.

Proposition 64.29.3. Let $X/k$ as before but $X_{\overline{k}}\neq \mathbf{P}^1_{\overline{k}}$ The functors $ (M, \rho )\mapsto H_ c^{2-i}(X_{\overline{k}}, \mathcal{F}_\rho ) $ are the left derived functor of $(M, \rho )\mapsto H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )$ so

\[ H_ c^{2-i}(X_{\overline{k}}, \mathcal{F}_\rho ) = H_ i(\pi _1(X_{\overline{k}}, \overline\eta ), M)(-1) \]

Moreover, there is a derived version, namely

\[ R\Gamma _ c(X_{\overline{k}}, \mathcal{F}_\rho ) = LH_0(\pi _1(X_{\overline{k}}, \overline\eta ), M(-1)) = M(-1) \otimes _{\Lambda [[\pi _1(X_{\overline{k}}, \overline\eta )]]}^\mathbf {L} \Lambda \]

in $D(\Lambda [[\widehat{\mathbf{Z}}]])$. Similarly, the functors $(M, \rho )\mapsto H^ i(X_{\overline{k}}, \mathcal{F}_\rho )$ are the right derived functor of $(M, \rho )\mapsto M^{\pi _1(X_{\overline{k}}, \overline\eta )}$ so

\[ H^ i(X_{\overline{k}}, \mathcal{F}_\rho ) = H^ i(\pi _1(X_{\overline{k}}, \overline\eta ), M) \]

Moreover, in this case there is a derived version too.

Proof. (Idea) Show both sides are universal $\delta $-functors. $\square$

Remark 64.29.4. By the proposition and Trivial duality then you get

\[ H^{2-i}_ c(X_{\overline{k}}, \mathcal{F}_\rho ) \times H^ i(X_{\overline{k}}, \mathcal{F}_\rho ^\wedge (1)) \to \mathbf{Q}/\mathbf{Z} \]

a perfect pairing. If $X$ is projective then this is Poincare duality.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03VJ. Beware of the difference between the letter 'O' and the digit '0'.