The Stacks project

Lemma 64.29.1. There is a canonical isomorphism

\[ H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )=(M)_{\pi _1(X_{\overline{k}}, \overline\eta )}(-1) \]

as $\text{Gal}(k^{^{sep}}/k)$-modules.

Proof of Lemma 64.29.1. Let $Y\to ^{\varphi }X$ be the finite étale Galois covering corresponding to $\mathop{\mathrm{Ker}}(\rho ) \subset \pi _1(X, \overline\eta )$. So

\[ \text{Aut}(Y/X)=Ind(\rho ) \]

is Galois group. Then $\varphi ^*\mathcal{F}_\rho =\underline M_ Y$ and

\[ \varphi _*\varphi ^*\mathcal{F}_\rho \to \mathcal{F}_\rho \]

which gives

\begin{align*} & H_ c^2(X_{\overline{k}}, \varphi _*\varphi ^*\mathcal{F}_\rho ) \to H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )\\ & =H_ c^2(Y_{\overline{k}}, \varphi ^*\mathcal{F}_\rho )\\ & =H_ c^2(Y_{\overline{k}}, \underline M) = \oplus _{\text{irred. comp. of } \atop Y_{\overline{k}}}M \end{align*}

\[ \mathop{\mathrm{Im}}(\rho ) \to H_ c^2(Y_{\overline{k}}, \underline M) = \oplus _{\text{irred. comp. of } \atop Y_{\overline{k}}} M \to _{\mathop{\mathrm{Im}}(\rho ) \text{equivalent}} H_ c^2(X_{\overline{k}}, \mathcal{F}_{\rho }) \to ^{\text{trivial } \mathop{\mathrm{Im}}(\rho ) \atop \text{action}} \]

irreducible curve $C/\overline{k}$, $H_ c^2(C, \underline M)=M$.

Since

\[ {\text{set of irreducible } \atop \text{components of }Y_ k} = \frac{Im(\rho )}{Im(\rho |_{\pi _1(X_{\overline{k}}, \overline\eta )})} \]

We conclude that $H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )$ is a quotient of $M_{\pi _1(X_{\overline{k}}, \overline\eta )}$. On the other hand, there is a surjection

\[ \mathcal{F}_\rho \to \mathcal{F}'' = {\text{ sheaf on } X\text{ associated to } \atop (M)_{\pi _1(X_{\overline{k}}, \overline\eta )}\leftarrow \pi _1(X, \overline\eta )} \]

\[ H_ c^2(X_{\overline{k}}, \mathcal{F}_\rho )\to M_{\pi _1(X_{\overline{k}}, \overline\eta )} \]

The twist in Galois action comes from the fact that $H_ c^2(X_{\overline{k}}, \mu _ n)=^{\text{can}} \mathbf{Z}/n\mathbf{Z}$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03VK. Beware of the difference between the letter 'O' and the digit '0'.