Lemma 18.7.2. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. There exists a factorization
where
$g : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ is an equivalence of topoi induced by a special cocontinuous functor $\mathcal{C} \to \mathcal{C}'$ (see Sites, Definition 7.29.2),
$e : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}')$ is an equivalence of topoi induced by a special cocontinuous functor $\mathcal{D} \to \mathcal{D}'$ (see Sites, Definition 7.29.2),
$\mathcal{O}_{\mathcal{C}'} = g_*\mathcal{O}_\mathcal {C}$ and $g^\sharp $ is the obvious map,
$\mathcal{O}_{\mathcal{D}'} = e_*\mathcal{O}_\mathcal {D}$ and $e^\sharp $ is the obvious map,
the sites $\mathcal{C}'$ and $\mathcal{D}'$ have final objects and fibre products (i.e., all finite limits),
$h$ is a morphism of sites induced by a continuous functor $u : \mathcal{D}' \to \mathcal{C}'$ which commutes with all finite limits (i.e., it satisfies the assumptions of Sites, Proposition 7.14.7), and
given any set of sheaves $\mathcal{F}_ i$ (resp. $\mathcal{G}_ j$) on $\mathcal{C}$ (resp. $\mathcal{D}$) we may assume each of these is a representable sheaf on $\mathcal{C}'$ (resp. $\mathcal{D}'$).
Moreover, if $(f, f^\sharp )$ is an equivalence of ringed topoi, then we can choose the diagram such that $\mathcal{C}' = \mathcal{D}'$, $\mathcal{O}_{\mathcal{C}'} = \mathcal{O}_{\mathcal{D}'}$ and $(h, h^\sharp )$ is the identity.
Comments (0)
There are also: