18.7 Ringed topoi
A ringed topos is just a ringed site, except that the notion of a morphism of ringed topoi is different from the notion of a morphism of ringed sites.
Definition 18.7.1. Ringed topoi.
A ringed topos is a pair $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$ where $\mathcal{C}$ is a site and $\mathcal{O}$ is a sheaf of rings on $\mathcal{C}$. The sheaf $\mathcal{O}$ is called the structure sheaf of the ringed topos.
Let $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O})$, $(\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}')$ be ringed topoi. A morphism of ringed topoi
\[ (f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}) \longrightarrow (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \]
is given by a morphism of topoi $f : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ (see Sites, Definition 7.15.1) together with a map of sheaves of rings $f^\sharp : f^{-1}\mathcal{O}' \to \mathcal{O}$, which by adjunction is the same thing as a map of sheaves of rings $f^\sharp : \mathcal{O}' \to f_*\mathcal{O}$.
Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_1), \mathcal{O}_1) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_2), \mathcal{O}_2)$ and $(g, g^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_2), \mathcal{O}_2) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_3), \mathcal{O}_3)$ be morphisms of ringed topoi. Then we define the composition of morphisms of ringed topoi by the rule
\[ (g, g^\sharp ) \circ (f, f^\sharp ) = (g \circ f, f^\sharp \circ g^\sharp ). \]
Here we use composition of morphisms of topoi defined in Sites, Definition 7.15.1 and $f^\sharp \circ g^\sharp $ indicates the morphism of sheaves of rings
\[ \mathcal{O}_3 \xrightarrow {g^\sharp } g_*\mathcal{O}_2 \xrightarrow {g_*f^\sharp } g_*f_*\mathcal{O}_1 = (g \circ f)_*\mathcal{O}_1 \]
Every morphism of ringed topoi is the composition of an equivalence of ringed topoi with a morphism of ringed topoi associated to a morphism of ringed sites. Here is the precise statement.
Lemma 18.7.2. Let $(f, f^\sharp ) : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. There exists a factorization
\[ \xymatrix{ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \ar[rr]_{(f, f^\sharp )} \ar[d]_{(g, g^\sharp )} & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D}) \ar[d]^{(e, e^\sharp )} \\ (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}_{\mathcal{C}'}) \ar[rr]^{(h, h^\sharp )} & & (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}'), \mathcal{O}_{\mathcal{D}'}) } \]
where
$g : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}')$ is an equivalence of topoi induced by a special cocontinuous functor $\mathcal{C} \to \mathcal{C}'$ (see Sites, Definition 7.29.2),
$e : \mathop{\mathit{Sh}}\nolimits (\mathcal{D}) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{D}')$ is an equivalence of topoi induced by a special cocontinuous functor $\mathcal{D} \to \mathcal{D}'$ (see Sites, Definition 7.29.2),
$\mathcal{O}_{\mathcal{C}'} = g_*\mathcal{O}_\mathcal {C}$ and $g^\sharp $ is the obvious map,
$\mathcal{O}_{\mathcal{D}'} = e_*\mathcal{O}_\mathcal {D}$ and $e^\sharp $ is the obvious map,
the sites $\mathcal{C}'$ and $\mathcal{D}'$ have final objects and fibre products (i.e., all finite limits),
$h$ is a morphism of sites induced by a continuous functor $u : \mathcal{D}' \to \mathcal{C}'$ which commutes with all finite limits (i.e., it satisfies the assumptions of Sites, Proposition 7.14.7), and
given any set of sheaves $\mathcal{F}_ i$ (resp. $\mathcal{G}_ j$) on $\mathcal{C}$ (resp. $\mathcal{D}$) we may assume each of these is a representable sheaf on $\mathcal{C}'$ (resp. $\mathcal{D}'$).
Moreover, if $(f, f^\sharp )$ is an equivalence of ringed topoi, then we can choose the diagram such that $\mathcal{C}' = \mathcal{D}'$, $\mathcal{O}_{\mathcal{C}'} = \mathcal{O}_{\mathcal{D}'}$ and $(h, h^\sharp )$ is the identity.
Proof.
This follows from Sites, Lemma 7.29.6, and Sites, Remarks 7.29.7 and 7.29.8. You just have to carry along the sheaves of rings. Some details omitted.
$\square$
Comments (2)
Comment #1338 by yogesh more on
Comment #1357 by Johan on