The Stacks project

42.36 Projective space bundle formula

Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Consider a finite locally free $\mathcal{O}_ X$-module $\mathcal{E}$ of rank $r$. Our convention is that the projective bundle associated to $\mathcal{E}$ is the morphism

\[ \xymatrix{ \mathbf{P}(\mathcal{E}) = \underline{\text{Proj}}_ X(\text{Sym}^*(\mathcal{E})) \ar[r]^-\pi & X } \]

over $X$ with $\mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$ normalized so that $\pi _*(\mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)) = \mathcal{E}$. In particular there is a surjection $\pi ^*\mathcal{E} \to \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$. We will say informally “let $(\pi : P \to X, \mathcal{O}_ P(1))$ be the projective bundle associated to $\mathcal{E}$” to denote the situation where $P = \mathbf{P}(\mathcal{E})$ and $\mathcal{O}_ P(1) = \mathcal{O}_{\mathbf{P}(\mathcal{E})}(1)$.

Lemma 42.36.1. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module $\mathcal{E}$ of rank $r$. Let $(\pi : P \to X, \mathcal{O}_ P(1))$ be the projective bundle associated to $\mathcal{E}$. For any $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$ the element

\[ \pi _*\left( c_1(\mathcal{O}_ P(1))^ s \cap \pi ^*\alpha \right) \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1 - s}(X) \]

is $0$ if $s < r - 1$ and is equal to $\alpha $ when $s = r - 1$.

Proof. Let $Z \subset X$ be an integral closed subscheme of $\delta $-dimension $k$. Note that $\pi ^*[Z] = [\pi ^{-1}(Z)]$ as $\pi ^{-1}(Z)$ is integral of $\delta $-dimension $r - 1$. If $s < r - 1$, then by construction $c_1(\mathcal{O}_ P(1))^ s \cap \pi ^*[Z]$ is represented by a $(k + r - 1 - s)$-cycle supported on $\pi ^{-1}(Z)$. Hence the pushforward of this cycle is zero for dimension reasons.

Let $s = r - 1$. By the argument given above we see that $\pi _*(c_1(\mathcal{O}_ P(1))^ s \cap \pi ^*\alpha ) = n [Z]$ for some $n \in \mathbf{Z}$. We want to show that $n = 1$. For the same dimension reasons as above it suffices to prove this result after replacing $X$ by $X \setminus T$ where $T \subset Z$ is a proper closed subset. Let $\xi $ be the generic point of $Z$. We can choose elements $e_1, \ldots , e_{r - 1} \in \mathcal{E}_\xi $ which form part of a basis of $\mathcal{E}_\xi $. These give rational sections $s_1, \ldots , s_{r - 1}$ of $\mathcal{O}_ P(1)|_{\pi ^{-1}(Z)}$ whose common zero set is the closure of the image a rational section of $\mathbf{P}(\mathcal{E}|_ Z) \to Z$ union a closed subset whose support maps to a proper closed subset $T$ of $Z$. After removing $T$ from $X$ (and correspondingly $\pi ^{-1}(T)$ from $P$), we see that $s_1, \ldots , s_ n$ form a sequence of global sections $s_ i \in \Gamma (\pi ^{-1}(Z), \mathcal{O}_{\pi ^{-1}(Z)}(1))$ whose common zero set is the image of a section $Z \to \pi ^{-1}(Z)$. Hence we see successively that

\begin{eqnarray*} \pi ^*[Z] & = & [\pi ^{-1}(Z)] \\ c_1(\mathcal{O}_ P(1)) \cap \pi ^*[Z] & = & [Z(s_1)] \\ c_1(\mathcal{O}_ P(1))^2 \cap \pi ^*[Z] & = & [Z(s_1) \cap Z(s_2)] \\ \ldots & = & \ldots \\ c_1(\mathcal{O}_ P(1))^{r - 1} \cap \pi ^*[Z] & = & [Z(s_1) \cap \ldots \cap Z(s_{r - 1})] \end{eqnarray*}

by repeated applications of Lemma 42.25.4. Since the pushforward by $\pi $ of the image of a section of $\pi $ over $Z$ is clearly $[Z]$ we see the result when $\alpha = [Z]$. We omit the verification that these arguments imply the result for a general cycle $\alpha = \sum n_ j [Z_ j]$. $\square$

Lemma 42.36.2 (Projective space bundle formula). Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module $\mathcal{E}$ of rank $r$. Let $(\pi : P \to X, \mathcal{O}_ P(1))$ be the projective bundle associated to $\mathcal{E}$. The map

\[ \bigoplus \nolimits _{i = 0}^{r - 1} \mathop{\mathrm{CH}}\nolimits _{k + i}(X) \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P), \]
\[ (\alpha _0, \ldots , \alpha _{r-1}) \longmapsto \pi ^*\alpha _0 + c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}_ P(1))^{r - 1} \cap \pi ^*\alpha _{r-1} \]

is an isomorphism.

Proof. Fix $k \in \mathbf{Z}$. We first show the map is injective. Suppose that $(\alpha _0, \ldots , \alpha _{r - 1})$ is an element of the left hand side that maps to zero. By Lemma 42.36.1 we see that

\[ 0 = \pi _*(\pi ^*\alpha _0 + c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}_ P(1))^{r - 1} \cap \pi ^*\alpha _{r-1}) = \alpha _{r - 1} \]

Next, we see that

\[ 0 = \pi _*(c_1(\mathcal{O}_ P(1)) \cap (\pi ^*\alpha _0 + c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1 + \ldots + c_1(\mathcal{O}_ P(1))^{r - 2} \cap \pi ^*\alpha _{r - 2})) = \alpha _{r - 2} \]

and so on. Hence the map is injective.

It remains to show the map is surjective. Let $X_ i$, $i \in I$ be the irreducible components of $X$. Then $P_ i = \mathbf{P}(\mathcal{E}|_{X_ i})$, $i \in I$ are the irreducible components of $P$. Consider the commutative diagram

\[ \xymatrix{ \coprod P_ i \ar[d]_{\coprod \pi _ i} \ar[r]_ p & P \ar[d]^\pi \\ \coprod X_ i \ar[r]^ q & X } \]

Observe that $p_*$ is surjective. If $\beta \in \mathop{\mathrm{CH}}\nolimits _ k(\coprod X_ i)$ then $\pi ^* q_* \beta = p_*(\coprod \pi _ i)^* \beta $, see Lemma 42.15.1. Similarly for capping with $c_1(\mathcal{O}(1))$ by Lemma 42.26.4. Hence, if the map of the lemma is surjective for each of the morphisms $\pi _ i : P_ i \to X_ i$, then the map is surjective for $\pi : P \to X$. Hence we may assume $X$ is irreducible. Thus $\dim _\delta (X) < \infty $ and in particular we may use induction on $\dim _\delta (X)$.

The result is clear if $\dim _\delta (X) < k$. Let $\alpha \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P)$. For any locally closed subscheme $T \subset X$ denote $\gamma _ T : \bigoplus \mathop{\mathrm{CH}}\nolimits _{k + i}(T) \to \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(\pi ^{-1}(T))$ the map

\[ \gamma _ T(\alpha _0, \ldots , \alpha _{r - 1}) = \pi ^*\alpha _0 + \ldots + c_1(\mathcal{O}_{\pi ^{-1}(T)}(1))^{r - 1} \cap \pi ^*\alpha _{r - 1}. \]

Suppose for some nonempty open $U \subset X$ we have $\alpha |_{\pi ^{-1}(U)} = \gamma _ U(\alpha _0, \ldots , \alpha _{r - 1})$. Then we may choose lifts $\alpha '_ i \in \mathop{\mathrm{CH}}\nolimits _{k + i}(X)$ and we see that $\alpha - \gamma _ X(\alpha '_0, \ldots , \alpha '_{r - 1})$ is by Lemma 42.19.3 rationally equivalent to a $k$-cycle on $P_ Y = \mathbf{P}(\mathcal{E}|_ Y)$ where $Y = X \setminus U$ as a reduced closed subscheme. Note that $\dim _\delta (Y) < \dim _\delta (X)$. By induction the result holds for $P_ Y \to Y$ and hence the result holds for $\alpha $. Hence we may replace $X$ by any nonempty open of $X$.

In particular we may assume that $\mathcal{E} \cong \mathcal{O}_ X^{\oplus r}$. In this case $\mathbf{P}(\mathcal{E}) = X \times \mathbf{P}^{r - 1}$. Let us use the stratification

\[ \mathbf{P}^{r - 1} = \mathbf{A}^{r - 1} \amalg \mathbf{A}^{r - 2} \amalg \ldots \amalg \mathbf{A}^0 \]

The closure of each stratum is a $\mathbf{P}^{r - 1 - i}$ which is a representative of $c_1(\mathcal{O}(1))^ i \cap [\mathbf{P}^{r - 1}]$. Hence $P$ has a similar stratification

\[ P = U^{r - 1} \amalg U^{r - 2} \amalg \ldots \amalg U^0 \]

Let $P^ i$ be the closure of $U^ i$. Let $\pi ^ i : P^ i \to X$ be the restriction of $\pi $ to $P^ i$. Let $\alpha \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P)$. By Lemma 42.32.1 we can write $\alpha |_{U^{r - 1}} = \pi ^*\alpha _0|_{U^{r - 1}}$ for some $\alpha _0 \in \mathop{\mathrm{CH}}\nolimits _ k(X)$. Hence the difference $\alpha - \pi ^*\alpha _0$ is the image of some $\alpha ' \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P^{r - 2})$. By Lemma 42.32.1 again we can write $\alpha '|_{U^{r - 2}} = (\pi ^{r - 2})^*\alpha _1|_{U^{r - 2}}$ for some $\alpha _1 \in \mathop{\mathrm{CH}}\nolimits _{k + 1}(X)$. By Lemma 42.31.1 we see that the image of $(\pi ^{r - 2})^*\alpha _1$ represents $c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1$. We also see that $\alpha - \pi ^*\alpha _0 - c_1(\mathcal{O}_ P(1)) \cap \pi ^*\alpha _1$ is the image of some $\alpha '' \in \mathop{\mathrm{CH}}\nolimits _{k + r - 1}(P^{r - 3})$. And so on. $\square$

Lemma 42.36.3. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $X$. Let

\[ p : E = \underline{\mathop{\mathrm{Spec}}}(\text{Sym}^*(\mathcal{E})) \longrightarrow X \]

be the associated vector bundle over $X$. Then $p^* : \mathop{\mathrm{CH}}\nolimits _ k(X) \to \mathop{\mathrm{CH}}\nolimits _{k + r}(E)$ is an isomorphism for all $k$.

Proof. (For the case of linebundles, see Lemma 42.32.2.) For surjectivity see Lemma 42.32.1. Let $(\pi : P \to X, \mathcal{O}_ P(1))$ be the projective space bundle associated to the finite locally free sheaf $\mathcal{E} \oplus \mathcal{O}_ X$. Let $s \in \Gamma (P, \mathcal{O}_ P(1))$ correspond to the global section $(0, 1) \in \Gamma (X, \mathcal{E} \oplus \mathcal{O}_ X)$. Let $D = Z(s) \subset P$. Note that $(\pi |_ D : D \to X , \mathcal{O}_ P(1)|_ D)$ is the projective space bundle associated to $\mathcal{E}$. We denote $\pi _ D = \pi |_ D$ and $\mathcal{O}_ D(1) = \mathcal{O}_ P(1)|_ D$. Moreover, $D$ is an effective Cartier divisor on $P$. Hence $\mathcal{O}_ P(D) = \mathcal{O}_ P(1)$ (see Divisors, Lemma 31.14.10). Also there is an isomorphism $E \cong P \setminus D$. Denote $j : E \to P$ the corresponding open immersion. For injectivity we use that the kernel of

\[ j^* : \mathop{\mathrm{CH}}\nolimits _{k + r}(P) \longrightarrow \mathop{\mathrm{CH}}\nolimits _{k + r}(E) \]

are the cycles supported in the effective Cartier divisor $D$, see Lemma 42.19.3. So if $p^*\alpha = 0$, then $\pi ^*\alpha = i_*\beta $ for some $\beta \in \mathop{\mathrm{CH}}\nolimits _{k + r}(D)$. By Lemma 42.36.2 we may write

\[ \beta = \pi _ D^*\beta _0 + \ldots + c_1(\mathcal{O}_ D(1))^{r - 1} \cap \pi _ D^* \beta _{r - 1}. \]

for some $\beta _ i \in \mathop{\mathrm{CH}}\nolimits _{k + i}(X)$. By Lemmas 42.31.1 and 42.26.4 this implies

\[ \pi ^*\alpha = i_*\beta = c_1(\mathcal{O}_ P(1)) \cap \pi ^*\beta _0 + \ldots + c_1(\mathcal{O}_ D(1))^ r \cap \pi ^*\beta _{r - 1}. \]

Since the rank of $\mathcal{E} \oplus \mathcal{O}_ X$ is $r + 1$ this contradicts Lemma 42.26.4 unless all $\alpha $ and all $\beta _ i$ are zero. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 02TV. Beware of the difference between the letter 'O' and the digit '0'.