The Stacks project

Lemma 7.10.5. Given a pair of coverings $\{ U_ i \to U\} $ and $\{ V_ j \to U\} $ of a given object $U$ of the site $\mathcal{C}$, there exists a covering which is a common refinement.

Proof. Since $\mathcal{C}$ is a site we have that for every $i$ the family $\{ V_ j \times _ U U_ i \to U_ i\} _ j$ is a covering. And, then another axiom implies that $\{ V_ j \times _ U U_ i \to U\} _{i, j}$ is a covering of $U$. Clearly this covering refines both given coverings. $\square$


Comments (1)

Comment #8570 by Alejandro González Nevado on

SS: For any given pair of coverings of an object of a site, there exists a covering which is a common refinement of these two coverings.

There are also:

  • 8 comment(s) on Section 7.10: Sheafification

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00W6. Beware of the difference between the letter 'O' and the digit '0'.