Lemma 7.10.6. Any two morphisms $f, g: \mathcal{U} \to \mathcal{V}$ of coverings inducing the same morphism $U \to V$ induce the same map $H^0(\mathcal{V}, \mathcal{F}) \to H^0(\mathcal{U}, \mathcal{F})$.
Proof. Let $\mathcal{U} = \{ U_ i \to U\} _{i\in I}$ and $\mathcal{V} = \{ V_ j \to V\} _{j\in J}$. The morphism $f$ consists of a map $U\to V$, a map $\alpha : I \to J$ and maps $f_ i : U_ i \to V_{\alpha (i)}$. Likewise, $g$ determines a map $\beta : I \to J$ and maps $g_ i : U_ i \to V_{\beta (i)}$. As $f$ and $g$ induce the same map $U\to V$, the diagram
is commutative for every $i\in I$. Hence $f$ and $g$ factor through the fibre product
Now let $s = (s_ j)_ j \in H^0(\mathcal{V}, \mathcal{F})$. Then for all $i\in I$:
where the middle equality is given by the definition of $H^0(\mathcal{V}, \mathcal{F})$. This shows that the maps $H^0(\mathcal{V}, \mathcal{F}) \to H^0(\mathcal{U}, \mathcal{F})$ induced by $f$ and $g$ are equal. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8571 by Alejandro González Nevado on
Comment #9149 by Stacks project on
There are also: