Lemma 7.10.4. The association $\mathcal{F} \mapsto (\mathcal{F} \to \mathcal{F}^+)$ is a functor.
Proof. Instead of proving this we state exactly what needs to be proven. Let $\mathcal{F} \to \mathcal{G}$ be a map of presheaves. Prove the commutativity of:
\[ \xymatrix{ \mathcal{F} \ar[r] \ar[d] & \mathcal{F}^{+} \ar[d] \\ \mathcal{G} \ar[r] & \mathcal{G}^{+} } \]
$\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8569 by Alejandro González Nevado on
Comment #9148 by Stacks project on
There are also: