The Stacks project

Lemma 10.131.14. If $S = R[x_1, \ldots , x_ n]$, then $\Omega _{S/R}$ is a finite free $S$-module with basis $\text{d}x_1, \ldots , \text{d}x_ n$.

Proof. We first show that $\text{d}x_1, \ldots , \text{d}x_ n$ generate $\Omega _{S/R}$ as an $S$-module. To prove this we show that $\text{d}g$ can be expressed as a sum $\sum g_ i \text{d}x_ i$ for any $g \in R[x_1, \ldots , x_ n]$. We do this by induction on the (total) degree of $g$. It is clear if the degree of $g$ is $0$, because then $\text{d}g = 0$. If the degree of $g$ is $> 0$, then we may write $g$ as $c + \sum g_ i x_ i$ with $c\in R$ and $\deg (g_ i) < \deg (g)$. By the Leibniz rule we have $\text{d}g = \sum g_ i \text{d} x_ i + \sum x_ i \text{d}g_ i$, and hence we win by induction.

Consider the $R$-derivation $\partial / \partial x_ i : R[x_1, \ldots , x_ n] \to R[x_1, \ldots , x_ n]$. (We leave it to the reader to define this; the defining property being that $\partial / \partial x_ i (x_ j) = \delta _{ij}$.) By the universal property this corresponds to an $S$-module map $l_ i : \Omega _{S/R} \to R[x_1, \ldots , x_ n]$ which maps $\text{d}x_ i$ to $1$ and $\text{d}x_ j$ to $0$ for $j \not= i$. Thus it is clear that there are no $S$-linear relations among the elements $\text{d}x_1, \ldots , \text{d}x_ n$. $\square$


Comments (1)

Comment #1087 by Nuno Cardoso on

Leibniz is spelled wrong as "Leibnize". There are also two more instances of this wrong spelling in Tags 60.12 and 90.4.6.

There are also:

  • 14 comment(s) on Section 10.131: Differentials

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00RX. Beware of the difference between the letter 'O' and the digit '0'.