Lemma 10.131.14. If $S = R[x_1, \ldots , x_ n]$, then $\Omega _{S/R}$ is a finite free $S$-module with basis $\text{d}x_1, \ldots , \text{d}x_ n$.
Proof. We first show that $\text{d}x_1, \ldots , \text{d}x_ n$ generate $\Omega _{S/R}$ as an $S$-module. To prove this we show that $\text{d}g$ can be expressed as a sum $\sum g_ i \text{d}x_ i$ for any $g \in R[x_1, \ldots , x_ n]$. We do this by induction on the (total) degree of $g$. It is clear if the degree of $g$ is $0$, because then $\text{d}g = 0$. If the degree of $g$ is $> 0$, then we may write $g$ as $c + \sum g_ i x_ i$ with $c\in R$ and $\deg (g_ i) < \deg (g)$. By the Leibniz rule we have $\text{d}g = \sum g_ i \text{d} x_ i + \sum x_ i \text{d}g_ i$, and hence we win by induction.
Consider the $R$-derivation $\partial / \partial x_ i : R[x_1, \ldots , x_ n] \to R[x_1, \ldots , x_ n]$. (We leave it to the reader to define this; the defining property being that $\partial / \partial x_ i (x_ j) = \delta _{ij}$.) By the universal property this corresponds to an $S$-module map $l_ i : \Omega _{S/R} \to R[x_1, \ldots , x_ n]$ which maps $\text{d}x_ i$ to $1$ and $\text{d}x_ j$ to $0$ for $j \not= i$. Thus it is clear that there are no $S$-linear relations among the elements $\text{d}x_1, \ldots , \text{d}x_ n$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #1087 by Nuno Cardoso on
There are also: