Lemma 90.4.6. Let $f : R \to S$ be a morphism of $\widehat{\mathcal{C}}_\Lambda $. If $\text{Der}_\Lambda (S, k) \to \text{Der}_\Lambda (R, k)$ is injective, then $f$ is surjective.
Proof. If $f$ is not surjective, then $\mathfrak m_ S/(\mathfrak m_ R S + \mathfrak m_ S^2)$ is nonzero by Lemma 90.4.2. Then also $Q = S/(f(R) + \mathfrak m_ R S + \mathfrak m_ S^2)$ is nonzero. Note that $Q$ is a $k = R/\mathfrak m_ R$-vector space via $f$. We turn $Q$ into an $S$-module via $S \to k$. The quotient map $D : S \to Q$ is an $R$-derivation: if $a_1, a_2 \in S$, we can write $a_1 = f(b_1) + a_1'$ and $a_2 = f(b_2) + a_2'$ for some $b_1, b_2 \in R$ and $a_1', a_2' \in \mathfrak m_ S$. Then $b_ i$ and $a_ i$ have the same image in $k$ for $i = 1, 2$ and
in $Q$ which proves the Leibniz rule. Hence $D : S \to Q$ is a $\Lambda $-derivation which is zero on composing with $R \to S$. Since $Q \not= 0$ there also exist derivations $D : S \to k$ which are zero on composing with $R \to S$, i.e., $\text{Der}_\Lambda (S, k) \to \text{Der}_\Lambda (R, k)$ is not injective. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)