Lemma 10.102.7. In Situation 10.102.1. Suppose $R$ is a local ring with maximal ideal $\mathfrak m$. Suppose that $0 \to R^{n_ e} \to R^{n_{e-1}} \to \ldots \to R^{n_0}$ is exact at $R^{n_ e}, \ldots , R^{n_1}$. Let $x \in \mathfrak m$ be a nonzerodivisor. The complex $0 \to (R/xR)^{n_ e} \to \ldots \to (R/xR)^{n_1}$ is exact at $(R/xR)^{n_ e}, \ldots , (R/xR)^{n_2}$.
Proof. Denote $F_\bullet $ the complex with terms $F_ i = R^{n_ i}$ and differential given by $\varphi _ i$. Then we have a short exact sequence of complexes
\[ 0 \to F_\bullet \xrightarrow {x} F_\bullet \to F_\bullet /xF_\bullet \to 0 \]
Applying the snake lemma we get a long exact sequence
\[ H_ i(F_\bullet ) \xrightarrow {x} H_ i(F_\bullet ) \to H_ i(F_\bullet /xF_\bullet ) \to H_{i - 1}(F_\bullet ) \xrightarrow {x} H_{i - 1}(F_\bullet ) \]
The lemma follows. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: