Lemma 10.102.6. In Situation 10.102.1, suppose the complex is isomorphic to a direct sum of trivial complexes. Then we have
the maps $\varphi _ i$ have rank $r_ i = n_ i - n_{i + 1} + \ldots + (-1)^{e-i-1} n_{e-1} + (-1)^{e-i} n_ e$,
for all $i$, $1 \leq i \leq e - 1$ we have $\text{rank}(\varphi _{i + 1}) + \text{rank}(\varphi _ i) = n_ i$,
each $I(\varphi _ i) = R$.
Comments (0)
There are also: