The Stacks project

Lemma 10.62.4. Let $R$ be a Noetherian ring. Let $I \subset R$ be an ideal. Let $M$ be a finite $R$-module. Then $I^ nM = 0$ for some $n \geq 0$ if and only if $\text{Supp}(M) \subset V(I)$.

Proof. Indeed, $I^ nM = 0$ is equivalent to $I^ n \subset \text{Ann}(M)$. Since $R$ is Noetherian, this is equivalent to $I \subset \sqrt{\text{Ann}(M)}$, see Lemma 10.32.5. This in turn is equivalent to $V(I) \supset V(\text{Ann}(M))$, see Lemma 10.17.2. By Lemma 10.40.5 this is equivalent to $V(I) \supset \text{Supp}(M)$. $\square$


Comments (2)

Comment #6774 by Yuto Masamura on

This also follows from Lemma 10.40.5.

Indeed, is equivalent to , hence to since is Noetherian. This is equivalent to , thus by Lemma 10.40.5 .

There are also:

  • 3 comment(s) on Section 10.62: Support and dimension of modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 00L6. Beware of the difference between the letter 'O' and the digit '0'.