Lemma 10.59.9. Let $R$ be a Noetherian local ring. Let $I \subset R$ be an ideal of definition. Let $M$ be a finite $R$-module which does not have finite length. If $M' \subset M$ is a submodule with finite colength, then $\chi _{I, M} - \chi _{I, M'}$ is a polynomial of degree $<$ degree of either polynomial.
Proof. Follows from Lemma 10.59.2 by elementary calculus. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: