Lemma 10.59.2. Suppose that $M' \subset M$ are finite $R$-modules with finite length quotient. Then there exists a constants $c_1, c_2$ such that for all $n \geq c_2$ we have
\[ c_1 + \chi _{I, M'}(n - c_2) \leq \chi _{I, M}(n) \leq c_1 + \chi _{I, M'}(n) \]
Proof. Since $M/M'$ has finite length there is a $c_2 \geq 0$ such that $I^{c_2}M \subset M'$. Let $c_1 = \text{length}_ R(M/M')$. For $n \geq c_2$ we have
\begin{eqnarray*} \chi _{I, M}(n) & = & \text{length}_ R(M/I^{n + 1}M) \\ & = & c_1 + \text{length}_ R(M'/I^{n + 1}M) \\ & \leq & c_1 + \text{length}_ R(M'/I^{n + 1}M') \\ & = & c_1 + \chi _{I, M'}(n) \end{eqnarray*}
On the other hand, since $I^{c_2}M \subset M'$, we have $I^ nM \subset I^{n - c_2}M'$ for $n \geq c_2$. Thus for $n \geq c_2$ we get
\begin{eqnarray*} \chi _{I, M}(n) & = & \text{length}_ R(M/I^{n + 1}M) \\ & = & c_1 + \text{length}_ R(M'/I^{n + 1}M) \\ & \geq & c_1 + \text{length}_ R(M'/I^{n + 1 - c_2}M') \\ & = & c_1 + \chi _{I, M'}(n - c_2) \end{eqnarray*}
which finishes the proof. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: