The Stacks project

Lemma 15.89.11. In Remark 15.89.10 the functor $H^0 : \text{Glue}(R \to S, f_1, \ldots , f_ t) \to \text{Mod}_ R$ is a right adjoint to the functor $\text{Can} : \text{Mod}_ R \to \text{Glue}(R \to S, f_1, \ldots , f_ t)$.

Proof. Let $\mathbf{M} = (M', M_ i, \alpha _ i, \alpha _{ij})$ be an object of $\text{Glue}(R \to S, f_1, \ldots , f_ t)$. For any $R$-module $N$ there is a map

\[ \mathop{\mathrm{Hom}}\nolimits _{\text{Glue}(R \to S, f_1, \ldots , f_ t)}(\text{Can}(N), \mathbf{M}) \to \mathop{\mathrm{Hom}}\nolimits _ R(N, H^0(\mathbf{M})) \]

sending $\psi $ to $H^0(\psi )$ composed with the obvious map $N \to H^0(\text{Can}(N))$. By construction the displayed map is an isomorphism for $N = R$ (even if $R \to H^0(\text{Can}(R))$ is not an isomorphism in general). The category $\text{Glue}(R \to S, f_1, \ldots , f_ t)$ has direct sums and cokernels. The functor $\text{Can}$ commutes with direct sums and cokernels. From these observations we find the displayed map is bijective by writing $N$ as a cokernel of a map between free $R$-modules. We omit the details. $\square$


Comments (0)

There are also:

  • 2 comment(s) on Section 15.89: Formal glueing of module categories

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H77. Beware of the difference between the letter 'O' and the digit '0'.