Remark 15.89.10. In this remark we define a category of glueing data. Let $R \to S$ be a ring map. Let $f_1, \ldots , f_ t \in R$ and $I = (f_1, \ldots , f_ t)$. Consider the category $\text{Glue}(R \to S, f_1, \ldots , f_ t)$ as the category whose
objects are systems $(M', M_ i, \alpha _ i, \alpha _{ij})$, where $M'$ is an $S$-module, $M_ i$ is an $R_{f_ i}$-module, $\alpha _ i : (M')_{f_ i} \to M_ i \otimes _ R S$ is an isomorphism, and $\alpha _{ij} : (M_ i)_{f_ j} \to (M_ j)_{f_ i}$ are isomorphisms such that
$\alpha _{ij} \circ \alpha _ i = \alpha _ j$ as maps $(M')_{f_ if_ j} \to (M_ j)_{f_ i}$, and
$\alpha _{jk} \circ \alpha _{ij} = \alpha _{ik}$ as maps $(M_ i)_{f_ jf_ k} \to (M_ k)_{f_ if_ j}$ (cocycle condition).
morphisms $(M', M_ i, \alpha _ i, \alpha _{ij}) \to (N', N_ i, \beta _ i, \beta _{ij})$ are given by maps $\varphi ' : M' \to N'$ and $\varphi _ i : M_ i \to N_ i$ compatible with the given maps $\alpha _ i, \beta _ i, \alpha _{ij}, \beta _{ij}$.
There is a canonical functor
where $\text{can}_ i : (M \otimes _ R S)_{f_ i} \to M_{f_ i} \otimes _ R S$ and $\text{can}_{ij} : (M_{f_ i})_{f_ j} \to (M_{f_ j})_{f_ i}$ are the canonical isomorphisms. For any object $\mathbf{M} = (M', M_ i, \alpha _ i, \alpha _{ij})$ of the category $\text{Glue}(R \to S, f_1, \ldots , f_ t)$ we define
in other words defined by the exact sequence
similar to (15.89.8.1). We think of $H^0(\mathbf{M})$ as an $R$-module. Thus we also get a functor
Our next goal is to show that the functors $\text{Can}$ and $H^0$ are sometimes quasi-inverse to each other.
Comments (0)
There are also: