The Stacks project

Lemma 101.51.2. Let $f : \mathcal{Y} \to \mathcal{X}$ be a morphism of algebraic stacks. Let $x \in |\mathcal{X}|$ be a point. Assume

  1. $\mathcal{X}$ is decent or locally Noetherian (or both),

  2. $\mathcal{I}_\mathcal {X} \to \mathcal{X}$ is quasi-compact,

  3. $|f|(|\mathcal{Y}|)$ is contained in $\{ x\} \subset |\mathcal{X}|$, and

  4. $\mathcal{Y}$ is reduced.

Then $f$ factors through the residual gerbe $\mathcal{Z}_ x$ of $\mathcal{X}$ at $x$ (whose existence is guaranteed by Lemma 101.31.1 or 101.31.3).

Proof. Let $T = \overline{\{ x\} } \subset |\mathcal{X}|$ be the closure of $x$. By Properties of Stacks, Lemma 100.10.1 there exists a reduced closed substack $\mathcal{X}' \subset \mathcal{X}$ such that $T = |\mathcal{X}'|$. By Properties of Stacks, Lemma 100.10.3 the morphism $f$ factors through $\mathcal{X}'$. If $\mathcal{X}$ is decent, then by Lemma 101.48.3 the stack $\mathcal{X}'$ is decent. If $\mathcal{X}$ is locally Noetherian, then $\mathcal{X}'$ is locally Noetherian (details omitted). Note that $\mathcal{I}_{\mathcal{X}'} \to \mathcal{X}'$ is the base change of $\mathcal{I}_\mathcal {X} \to \mathcal{X}$ by Lemma 101.5.6 we see that $\mathcal{I}_{\mathcal{X}'} \to \mathcal{X}'$ is quasi-compact by Lemma 101.7.3. This reduces us to the case discussed in the next paragraph.

Assume $\mathcal{X}$ is reduced and $x \in |\mathcal{X}|$ is a generic point. By Proposition 101.29.1 implies there exists a dense open substack $\mathcal{U} \subset \mathcal{X}'$ which is a gerbe. Note that $x \in |\mathcal{U}|$. Repeating the arguments above we reduce to the case discussed in the next paragraph.

Assume $\mathcal{X} \to X$ is a gerbe over the algebraic space $X$. If $\mathcal{X}$ is decent, then by Lemmas 101.28.13 and 101.48.4 the space $X$ is decent. If $\mathcal{X}$ is locally Noetherian, then $X$ is locally Noetherian by fppf descent (details omitted). Hence the corresponding result holds for $X$, see Decent Spaces, Lemma 68.13.10 or 68.13.9 (small detail omitted). Applying Lemma 101.51.1 we conclude that the result holds for $\mathcal{X}$ as well. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0H25. Beware of the difference between the letter 'O' and the digit '0'.