Lemma 101.48.2. A quasi-separated algebraic stack $\mathcal{X}$ is decent. More generally, if $\Delta : \mathcal{X} \to \mathcal{X} \times \mathcal{X}$ is quasi-compact, then $\mathcal{X}$ is decent.
Proof. Namely, if $\mathcal{X}$ is quasi-separated, then any morphism $f : T \to \mathcal{X}$ whose source is a quasi-compact scheme $T$, is quasi-compact, see Lemma 101.7.7. If $\Delta $ is on known to be quasi-compact, then one uses the description
\[ T \times _{f, \mathcal{X}, f'} T' = (T \times T') \times _{(f, f'), \mathcal{X} \times \mathcal{X}, \Delta } \mathcal{X} \]
to prove this. Details omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)