The Stacks project

Remark 42.19.2. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $k \in \mathbf{Z}$. Let us show that we have a presentation

\[ \bigoplus \nolimits _{\delta (x) = k + 1}' K_1^ M(\kappa (x)) \xrightarrow {\partial } \bigoplus \nolimits _{\delta (x) = k}' K_0^ M(\kappa (x)) \to \mathop{\mathrm{CH}}\nolimits _ k(X) \to 0 \]

Here we use the notation and conventions introduced in Remark 42.8.2 and in addition

  1. $K_1^ M(\kappa (x)) = \kappa (x)^*$ is the degree $1$ part of the Milnor K-theory of the residue field $\kappa (x)$ of the point $x \in X$ (see Remark 42.6.4), and

  2. the differential $\partial $ is defined as follows: given an element $\xi = \sum _ x f_ x$ we denote $W_ x = \overline{x}$ the integral closed subscheme of $X$ with generic point $x$ and we set

    \[ \partial (\xi ) = \sum (W_ x \to X)_*\text{div}(f_ x) \]

    in $Z_ k(X)$ which makes sense as we have seen that the second term of the complex is equal to $Z_ k(X)$ by Remark 42.8.2.

The fact that we obtain a presentation of $\mathop{\mathrm{CH}}\nolimits _ k(X)$ follows immediately by comparing with Definition 42.19.1.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GU3. Beware of the difference between the letter 'O' and the digit '0'.