Lemma 37.78.2. The composition of two completely decomposed morphisms of schemes is completely decomposed. If $\{ f_ i : X_ i \to Y\} _{i \in I}$ is completely decomposed and for each $i$ we have a family $\{ X_{ij} \to X_ i\} _{j \in J_ i}$ which is completely decomposed, then the family $\{ X_{ij} \to Y\} _{i \in I, j \in J_ i}$ is completely decomposed.
Proof. Omitted. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)