The Stacks project

Lemma 103.17.8. In the situation discussed above, the equivalence $\mathit{QCoh}(\mathcal{O}_\mathcal {X}) \cong \mathit{QCoh}(U, R, s, t, c)$ sends coherent sheaves to coherent sheaves and vice versa, i.e., induces an equivalence $\textit{Coh}(\mathcal{O}_\mathcal {X}) \cong \textit{Coh}(U, R, s, t, c)$.

Proof. This is immediate from the definition of coherent $\mathcal{O}_\mathcal {X}$-modules. For bookkeeping purposes: the material above uses Morphisms of Stacks, Lemma 101.17.5, Algebraic Stacks, Lemma 94.16.1 and Remark 94.16.3, Sheaves on Stacks, Section 96.15, Sheaves on Stacks, Proposition 96.14.3, and Groupoids in Spaces, Section 78.13. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GRC. Beware of the difference between the letter 'O' and the digit '0'.