The Stacks project

Lemma 103.17.7. Let $\mathcal{X}$ be a locally Noetherian algebraic stack. Then $\textit{Coh}(\mathcal{O}_\mathcal {X})$ is a Serre subcategory of $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of quasi-coherent $\mathcal{O}_\mathcal {X}$-modules. We have

  1. if $\mathcal{F}$ is coherent and $\varphi $ surjective, then $\mathcal{G}$ is coherent,

  2. if $\mathcal{F}$ is coherent, then $\mathop{\mathrm{Im}}(\varphi )$ is coherent, and

  3. if $\mathcal{G}$ coherent and $\mathop{\mathrm{Ker}}(\varphi )$ parasitic, then $\mathcal{F}$ is coherent.

Proof. Choose a scheme $U$ and a surjective smooth morphism $f : U \to \mathcal{X}$. Then the functor $f^* : \mathit{QCoh}(\mathcal{O}_\mathcal {X}) \to \mathit{QCoh}(\mathcal{O}_ U)$ is exact (Lemma 103.4.1) and moreover by definition $\textit{Coh}(\mathcal{O}_\mathcal {X})$ is the full subcategory of $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ consisting of objects $\mathcal{F}$ such that $f^*\mathcal{F}$ is in $\textit{Coh}(\mathcal{O}_ U)$. The statement that $\textit{Coh}(\mathcal{O}_\mathcal {X})$ is a Serre subcategory of $\mathit{QCoh}(\mathcal{O}_\mathcal {X})$ follows immediately from this and the corresponding fact for $U$, see Cohomology of Spaces, Lemmas 69.12.3 and 69.12.4. We omit the proof of (1), (2), and (3). Hint: compare with the proof of Lemma 103.17.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GRB. Beware of the difference between the letter 'O' and the digit '0'.