Lemma 96.14.1. Let $S$ be a scheme. Let $\mathcal{X} \to (\mathit{Sch}/S)_{fppf}$ be a category fibred in groupoids which is representable by an algebraic space $F$. If $\mathcal{F}$ is in $\textit{LQCoh}(\mathcal{O}_\mathcal {X})$ then the restriction $\mathcal{F}|_{F_{\acute{e}tale}}$ (96.10.2.1) is quasi-coherent.
Proof. Let $U$ be a scheme étale over $F$. Then $\mathcal{F}|_{U_{\acute{e}tale}} = (\mathcal{F}|_{F_{\acute{e}tale}})|_{U_{\acute{e}tale}}$. This is clear but see also Remark 96.10.2. Thus the assertion follows from the definitions. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: