Example 35.10.5. Let $S$ be a scheme. Let $\mathcal{F}$ and $\mathcal{G}$ be quasi-coherent modules on $(\mathit{Sch}/S)_\tau $ for one of the topologies $\tau $ considered in Lemma 35.10.4. In general it is not the case that $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ is quasi-coherent even if $\mathcal{F}$ is of finite presentation. Namely, say $S = \mathop{\mathrm{Spec}}(\mathbf{Z})$, $\mathcal{F} = \mathop{\mathrm{Coker}}(2 : \mathcal{O} \to \mathcal{O})$, and $\mathcal{G} = \mathcal{O}$. Then $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) = \mathcal{O}[2]$ is equal to the $2$-torsion in $\mathcal{O}$, which is not quasi-coherent.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)