The Stacks project

Lemma 35.10.4. Let $S$ be a scheme. Let $\tau \in \{ Zariski, \linebreak[0] {\acute{e}tale}, \linebreak[0] smooth, \linebreak[0] syntomic, \linebreak[0] fppf\} $. The category $\mathit{QCoh}((\mathit{Sch}/S)_\tau , \mathcal{O})$ of quasi-coherent modules on $(\mathit{Sch}/S)_\tau $ has the following properties:

  1. Any direct sum of quasi-coherent sheaves is quasi-coherent.

  2. Any colimit of quasi-coherent sheaves is quasi-coherent.

  3. The cokernel of a morphism of quasi-coherent sheaves is quasi-coherent.

  4. Given a short exact sequence of $\mathcal{O}$-modules $0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0$ if $\mathcal{F}_1$ and $\mathcal{F}_3$ are quasi-coherent so is $\mathcal{F}_2$.

  5. Given two quasi-coherent $\mathcal{O}$-modules the tensor product is quasi-coherent.

  6. Given two quasi-coherent $\mathcal{O}$-modules $\mathcal{F}$, $\mathcal{G}$ such that $\mathcal{F}$ is finite locally free, the internal hom $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G})$ is quasi-coherent.

Proof. The corresponding facts hold for quasi-coherent modules on the scheme $S$, see Schemes, Section 26.24. The proof will be to use Lemma 35.10.2 to transfer these truths to $(\mathit{Sch}/S)_\tau $.

Proof of (1). Let $\mathcal{F}_ i$, $i \in I$ be a family of objects of $\mathit{QCoh}((\mathit{Sch}/S)_\tau , \mathcal{O})$. Write $\mathcal{F}_ i = \mathcal{G}_ i^ a$ for some quasi-coherent modules $\mathcal{G}_ i$ on $S$. Then $\bigoplus \mathcal{F}_ i = (\bigoplus \mathcal{G}_ i)^ a$ by the lemma cited and we conclude.

Proof of (2). Let $\mathcal{I} \to \mathit{QCoh}((\mathit{Sch}/S)_\tau , \mathcal{O})$, $i \mapsto \mathcal{F}_ i$ be a diagram. Write $\mathcal{F}_ i = \mathcal{G}_ i^ a$ so we get a diagram $\mathcal{I} \to \mathit{QCoh}(\mathcal{O}_ S)$. Then $\mathop{\mathrm{colim}}\nolimits \mathcal{F}_ i = (\mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i)^ a$ by the lemma cited and we conclude.

Proof of (3). Let $a : \mathcal{F} \to \mathcal{F}'$ be an arrow of $\mathit{QCoh}((\mathit{Sch}/S)_\tau , \mathcal{O})$. Write $a = b^ a$ for some map $b : \mathcal{G} \to \mathcal{G}'$ of quasi-coherent modules on $S$. By the lemma cited we have $\mathop{\mathrm{Coker}}(a) = \mathop{\mathrm{Coker}}(b)^ a$ (because a cokernel is a colimit) and we conclude.

Proof of (4). Write $\mathcal{F}_1 = \mathcal{G}_1^ a$ and $\mathcal{F}_3 = \mathcal{G}_3^ a$ with $\mathcal{G}_ i$ quasi-coherent on $S$. By Lemma 35.10.2 part (10) we conclude.

Proof of (5). Let $\mathcal{F}$ and $\mathcal{F}'$ be in $\mathit{QCoh}((\mathit{Sch}/S)_\tau , \mathcal{O})$. Write $\mathcal{F} = \mathcal{G}^ a$ and $\mathcal{F}' = (\mathcal{G}')^ a$ with $\mathcal{G}$ and $\mathcal{G}'$ quasi-coherent on $S$. By the lemma cited we have $\mathcal{F} \otimes _\mathcal {O} \mathcal{F}' = (\mathcal{G} \otimes _{\mathcal{O}_ S} \mathcal{G}')^ a$ and we conclude.

Proof of (6). Write $\mathcal{F} = \mathcal{H}^ a$ for some quasi-coherent $\mathcal{O}_ S$-module. By Lemma 35.8.10 we see that $\mathcal{H}$ is finite locally free. The problem is Zariski local on $S$ (details omitted) hence we may assume $\mathcal{H} = \mathcal{O}_ S^{\oplus n}$ is finite free. Then $\mathcal{F} = \mathcal{O}^{\oplus n}$ and $\mathop{\mathcal{H}\! \mathit{om}}\nolimits _\mathcal {O}(\mathcal{F}, \mathcal{G}) = \mathcal{G}^{\oplus n}$ is quasi-coherent. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0GNC. Beware of the difference between the letter 'O' and the digit '0'.