Lemma 18.28.16. Let $\mathcal{C}$ be a site. Let $\mathcal{O} \to \mathcal{O}'$ be a flat homomorphism of sheaves of rings. Let $\mathcal{I} \subset \mathcal{O}$ be a sheaf of ideals such that the induced map $\mathcal{O}/\mathcal{I} \to \mathcal{O}'/\mathcal{I}\mathcal{O}'$ is an isomorphism. For any $\mathcal{O}$-module $\mathcal{F}$ annihilated by $\mathcal{I}^ n$ for some $n \geq 0$ the map $\text{id} \otimes 1 : \mathcal{F} \to \mathcal{F} \otimes _\mathcal {O} \mathcal{O}'$ is an isomorphism.
Proof. Omitted. Hint: See More on Algebra, Lemma 15.89.2. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)