Definition 10.60.1. Let $R$ be a ring. A chain of prime ideals is a sequence $\mathfrak p_0 \subset \mathfrak p_1 \subset \ldots \subset \mathfrak p_ n$ of prime ideals of $R$ such that $\mathfrak p_ i \not= \mathfrak p_{i + 1}$ for $i = 0, \ldots , n - 1$. The length of this chain of prime ideals is $n$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)