Lemma 50.23.2. The gysin map (50.23.1.1) is compatible with the de Rham differentials on $\Omega ^\bullet _{X/S}$ and $\Omega ^\bullet _{Z/S}$.
Proof. This follows from an almost trivial calculation once we correctly interpret this. First, we recall that the functor $\mathcal{H}^ c_ Z$ computed on the category of $\mathcal{O}_ X$-modules agrees with the similarly defined functor on the category of abelian sheaves on $X$, see Cohomology, Lemma 20.34.8. Hence, the differential $\text{d} : \Omega ^ p_{X/S} \to \Omega ^{p + 1}_{X/S}$ induces a map $\mathcal{H}^ c_ Z(\Omega ^ p_{X/S}) \to \mathcal{H}^ c_ Z(\Omega ^{p + 1}_{X/S})$. Moreover, the formation of the extended alternating Čech complex in Derived Categories of Schemes, Remark 36.6.4 works on the category of abelian sheaves. The map
used in the construction of $c_{f_1, \ldots , f_ c}$ in Derived Categories of Schemes, Remark 36.6.10 is well defined and functorial on the category of all abelian sheaves on $X$. Hence we see that the lemma follows from the equality
which is clear. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)