Remark 36.6.4. Let $X$ be a scheme. Let $f_1, \ldots , f_ c \in \Gamma (X, \mathcal{O}_ X)$. Denote $Z \subset X$ the closed subscheme cut out by $f_1, \ldots , f_ c$. For $0 \leq p < c$ and $1 \leq i_0 < \ldots < i_ p \leq c$ we denote $U_{i_0 \ldots i_ p} \subset X$ the open subscheme where $f_{i_0} \ldots f_{i_ p}$ is invertible. For any $\mathcal{O}_ X$-module $\mathcal{F}$ we set
In this situation the extended alternating Čech complex is the complex of $\mathcal{O}_ X$-modules
where $\mathcal{F}$ is put in degree $0$. The maps are constructed as follows. Given $1 \leq i_0 < \ldots < i_{p + 1} \leq c$ and $0 \leq j \leq p + 1$ we have the canonical map
coming from the inclusion $U_{i_0 \ldots i_ p} \subset U_{i_0 \ldots \hat i_ j \ldots i_{p + 1}}$. The differentials in the extended alternating complex use these canonical maps with sign $(-1)^ j$.
Comments (0)
There are also: