The Stacks project

Lemma 36.6.12. With $X$, $f_1, \ldots , f_ c \in \Gamma (X, \mathcal{O}_ X)$, and $\mathcal{F}$ as in Remark 36.6.4. Let $a_{ji} \in \Gamma (X, \mathcal{O}_ X)$ for $1 \leq i, j \leq c$ and set $g_ j = \sum _{i = 1, \ldots , c} a_{ji}f_ i$. Assume $g_1, \ldots , g_ c$ scheme theoretically cut out $Z$. If $\mathcal{F}$ is quasi-coherent, then

\[ c_{f_1, \ldots , f_ c} = \det (a_{ji}) c_{g_1, \ldots , g_ c} \]

where $c_{f_1, \ldots , f_ c}$ and $c_{g_1, \ldots , g_ c}$ are as in Remark 36.6.10.

Proof. We will prove that $c_{f_1, \ldots , f_ c}(s) = \det (a_{ij}) c_{g_1, \ldots , g_ c}(s)$ as global sections of $\mathcal{H}_ Z(\mathcal{F})$ for any $s \in \mathcal{F}(X)$. This is sufficient since we then obtain the same result for section over any open subscheme of $X$. To do this, for $1 \leq i_0 < \ldots < i_ p \leq c$ and $1 \leq j_0 < \ldots < j_ q \leq c$ we denote $U_{i_0 \ldots i_ p} \subset X$, $V_{j_0 \ldots j_ q} \subset X$, and $W_{i_0 \ldots i_ p, j_0 \ldots j_ q} \subset X$ the open subscheme where $f_{i_0} \ldots f_{i_ p}$ is invertible, $g_{j_0} \ldots g_{j_ q}$ is invertible, and where $f_{i_0} \ldots f_{i_ p}g_{j_0} \ldots g_{j_ q}$ is invertible. We denote $\mathcal{F}_{i_0 \ldots i_ p}$, resp. $\mathcal{F}'_{j_0 \ldots j_ q}$ $\mathcal{F}''_{i_0 \ldots i_ p, j_0 \ldots j_ q}$ the pushforward to $X$ of the restriction of $\mathcal{F}$ to $U_{i_0 \ldots i_ p}$, resp. $V_{j_0 \ldots j_ q}$, resp. $W_{i_0 \ldots i_ p, j_0 \ldots j_ q}$. Then we obtain three extended alternating Čech complexes

\[ \mathcal{F}^\bullet : \mathcal{F} \to \bigoplus \nolimits _{i_0} \mathcal{F}_{i_0} \to \bigoplus \nolimits _{i_0 < i_1} \mathcal{F}_{i_0i_1} \to \ldots \]

and

\[ (\mathcal{F}')^\bullet : \mathcal{F} \to \bigoplus \nolimits _{j_0} \mathcal{F}'_{j_0} \to \bigoplus \nolimits _{j_0 < j_1} \mathcal{F}'_{j_0j_1} \to \ldots \]

and

\[ (\mathcal{F}'')^\bullet : \mathcal{F} \to \bigoplus \nolimits _{i_0} \mathcal{F}_{i_0} \oplus \bigoplus \nolimits _{j_0} \mathcal{F}'_{j_0} \to \bigoplus \nolimits _{i_0 < i_1} \mathcal{F}_{i_0i_1} \oplus \bigoplus \nolimits _{i_0, j_0} \mathcal{F}''_{i_0, j_0} \oplus \bigoplus \nolimits _{j_0 < j_1} \mathcal{F}'_{j_0j_1} \to \ldots \]

whose differentials are those used in defining (36.6.4.1). There are maps of complexes

\[ (\mathcal{F}'')^\bullet \to \mathcal{F}^\bullet \quad \text{and}\quad (\mathcal{F}'')^\bullet \to (\mathcal{F}')^\bullet \]

given by the projection maps on the terms (and hence inducing the identity map in degree $0$). Observe that by Lemma 36.6.7 each of these complexes represents $i_*R\mathcal{H}_ Z(\mathcal{F})$ and these maps represent the identity on this object. Thus it suffices to find an element

\[ \sigma \in H^ c((\mathcal{F}'')^\bullet (X)) \]

mapping to $c_{f_1, \ldots , f_ c}(s)$ and $\det (a_{ji})c_{g_1, \ldots , g_ c}(s)$ by these two maps. It turns out we can explicitly give a cocycle for $\sigma $. Namely, we take

\[ \sigma _{1 \ldots c} = \frac{s}{f_1 \ldots f_ c} \in \mathcal{F}_{1 \ldots c}(X) \quad \text{and}\quad \sigma '_{1 \ldots c} = \frac{\det (a_{ji})s}{g_1 \ldots g_ c} \in \mathcal{F}'_{1 \ldots c}(X) \]

and we take

\[ \sigma _{i_0 \ldots i_ p, j_0 \ldots j_{c - p - 2}} = \frac{\lambda (i_0 \ldots i_ p, j_0 \ldots j_{c - p - 2})s}{f_{i_0} \ldots f_{i_ p}g_{j_0} \ldots g_{j_{c - p - 2}}} \in \mathcal{F}''_{i_0 \ldots i_ p, j_0 \ldots j_{c - p - 2}}(X) \]

where $\lambda (i_0 \ldots i_ p, j_0 \ldots j_{c - p - 2})$ is the coefficient of $e_1 \wedge \ldots \wedge e_ c$ in the formal expression

\[ e_{i_0} \wedge \ldots \wedge e_{i_ p} \wedge (a_{j_01} e_1 + \ldots + a_{j_0c}e_ c) \wedge \ldots \wedge (a_{j_{c - p - 2}1} e_1 + \ldots + a_{j_{c - p - 2}c}e_ c) \]

To verify that $\sigma $ is a cocycle, we have to show for $1 \leq i_0 < \ldots < i_ p \leq c$ and $1 \leq j_0 < \ldots < j_{c - p - 1} \leq c$ that we have

\begin{align*} 0 & = \sum \nolimits _{a = 0, \ldots , p} (-1)^ a f_{i_ a} \lambda (i_0 \ldots \hat i_ a \ldots i_ p, j_0 \ldots j_{c - p - 1}) \\ & + \sum \nolimits _{b = 0, \ldots , c - p - 1} (-1)^{p + b + 1}g_{j_ b} \lambda (i_0 \ldots i_ p, j_0 \ldots \hat j_ b \ldots j_{c - p - 1}) \end{align*}

The easiest way to see this is perhaps to argue that the formal expression

\[ \xi = e_{i_0} \wedge \ldots \wedge e_{i_ p} \wedge (a_{j_01} e_1 + \ldots + a_{j_0c}e_ c) \wedge \ldots \wedge (a_{j_{c - p - 1}1} e_1 + \ldots + a_{j_{c - p - 1}c}e_ c) \]

is $0$ as it is an element of the $(c + 1)$st wedge power of the free module on $e_1, \ldots , e_ c$ and that the expression above is the image of $\xi $ under the Koszul differential sending $e_ i \to f_ i$. Some details omitted. $\square$


Comments (0)

There are also:

  • 3 comment(s) on Section 36.6: Cohomology with support in a closed subset

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0G7S. Beware of the difference between the letter 'O' and the digit '0'.