Lemma 18.39.4. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O}') \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}'), \mathcal{O})$ be a morphism of ringed topoi. Let $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ be a short exact sequence of $\mathcal{O}$-modules with $\mathcal{H}$ a flat $\mathcal{O}$-module. Then the sequence $0 \to f^*\mathcal{F} \to f^*\mathcal{G} \to f^*\mathcal{H} \to 0$ is exact as well.
Proof. Since $f^{-1}$ is exact we have the short exact sequence $0 \to f^{-1}\mathcal{F} \to f^{-1}\mathcal{G} \to f^{-1}\mathcal{H} \to 0$ of $f^{-1}\mathcal{O}$-modules. By Lemma 18.39.1 the $f^{-1}\mathcal{O}$-module $f^{-1}\mathcal{H}$ is flat. By Lemma 18.28.9 this implies that tensoring the sequence over $f^{-1}\mathcal{O}$ with $\mathcal{O}'$ the sequence remains exact. Since $f^*\mathcal{F} = f^{-1}\mathcal{F} \otimes _{f^{-1}\mathcal{O}} \mathcal{O}'$ and similarly for $\mathcal{G}$ and $\mathcal{H}$ we conclude. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #9533 by nkym on