Example 110.22.2. Let $k$ be a field, and let $A \subseteq k[x, y]$ be the subring generated by $k$ and the monomials $\{ xy^ i\} _{i \ge 0}$. The prime ideals of $A$ that do not contain $x$ are in one-to-one correspondence with the prime ideals of $A_ x \cong k[x, x^{-1}, y]$. If $\mathfrak p$ is a prime ideal that does contain $x$, then it contains every $xy^ i$, $i \ge 0$, because $(xy^ i)^2 = x(xy^{2i}) \in \mathfrak p$ and $\mathfrak p$ is radical. Consequently $\mathfrak p = (\{ xy^ i\} _{i \ge 0})$. Therefore the underlying topological space of $\operatorname {Spec} A$ is Noetherian, since it consists of the points of the Noetherian scheme $\mathop{\mathrm{Spec}}(A[x, x^{-1}, y])$ and the prime ideal $\mathfrak p$. But the ring $A$ is non-Noetherian because $\mathfrak p$ is not finitely generated. Note that in this example, $A$ also has the property of being a domain.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)