Example 110.22.1. Let $k$ be a field, and let $A = k[x_1, x_2, x_3, \dots ] / (x_1^2, x_2^2, x_3^2, \dots )$. Any prime ideal of $A$ contains the nilpotents $x_1, x_2, x_3, \dots $, so $\mathfrak p = (x_1, x_2, x_3, \dots )$ is the only prime ideal of $A$. Therefore the underlying topological space of $\operatorname {Spec} A$ is a single point and in particular is Noetherian. However $\mathfrak p$ is clearly not finitely generated.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)