Lemma 10.47.10. Let $K/k$ be a field extension. The following are equivalent
$K$ is geometrically irreducible over $k$, and
the induced extension $K(t)/k(t)$ of purely transcendental extensions is geometrically irreducible.
Lemma 10.47.10. Let $K/k$ be a field extension. The following are equivalent
$K$ is geometrically irreducible over $k$, and
the induced extension $K(t)/k(t)$ of purely transcendental extensions is geometrically irreducible.
Proof. Assume (1). Denote $\Omega $ an algebraic closure of $k(t)$. By Definition 10.47.4 we find that the spectrum of
is irreducible. Since $K(t)$ is a localization of $K \otimes _ k k(T)$ we conclude that the spectrum of $K(t) \otimes _{k(t)} \Omega $ is irreducible. Thus by Lemma 10.47.3 we find that $K(t)/k(t)$ is geometrically irreducible.
Assume (2). Let $k'/k$ be a field extension. We have to show that $K \otimes _ k k'$ has a unique minimal prime. We know that the spectrum of
is irreducible, i.e., has a unique minimal prime. Since there is an injective map $K \otimes _ k k' \to K(t) \otimes _{k(t)} k'(t)$ (details omitted) we conclude by Lemmas 10.30.5 and 10.30.7. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: