Lemma 37.61.12. Let $i : Z \to X$ be a perfect closed immersion of schemes. Then $i_*\mathcal{O}_ Z$ is a perfect $\mathcal{O}_ X$-module, i.e., it is a perfect object of $D(\mathcal{O}_ X)$.
Proof. This is more or less immediate from the definition. Namely, let $U = \mathop{\mathrm{Spec}}(A)$ be an affine open of $X$. Then $i^{-1}(U) = \mathop{\mathrm{Spec}}(A/I)$ for some ideal $I \subset A$ and $A/I$ has a finite resolution by finite projective $A$-modules by More on Algebra, Lemma 15.82.2. Hence $i_*\mathcal{O}_ Z|_ U$ can be represented by a finite length complex of finite locally free $\mathcal{O}_ U$-modules. This is what we had to show, see Cohomology, Section 20.49. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #6652 by Brian Shin on
Comment #6874 by Johan on