Lemma 57.6.1. Let $\mathcal{D}$ be a triangulated category. Let $\mathcal{D}' \subset \mathcal{D}$ be a full triangulated subcategory. Let $X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$. The category of arrows $E \to X$ with $E \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{D}')$ is filtered.
Proof. We check the conditions of Categories, Definition 4.19.1. The category is nonempty because it contains $0 \to X$. If $E_ i \to X$, $i = 1, 2$ are objects, then $E_1 \oplus E_2 \to X$ is an object and there are morphisms $(E_ i \to X) \to (E_1 \oplus E_2 \to X)$. Finally, suppose that $a, b : (E \to X) \to (E' \to X)$ are morphisms. Choose a distinguished triangle $E \xrightarrow {a - b} E' \to E''$ in $\mathcal{D}'$. By Axiom TR3 we obtain a morphism of triangles
and we find that the resulting arrow $(E' \to X) \to (E'' \to X)$ equalizes $a$ and $b$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)