Lemma 36.22.4. Let $X \to S$ and $Y \to S$ be morphisms of schemes. Let $S' \to S$ be a morphism of schemes and denote $X' = X \times _ S S'$ and $Y' = Y \times _ S S'$. If $X$ and $Y$ are tor independent over $S$ and $S' \to S$ is flat, then $X'$ and $Y'$ are tor independent over $S'$.
Proof. Omitted. Hint: use Lemma 36.22.3 and on affine opens use More on Algebra, Lemma 15.61.4. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)