The Stacks project

Lemma 36.22.3. Let $f : X \to S$ and $g : Y \to S$ be morphisms of schemes. The following are equivalent

  1. $X$ and $Y$ are tor independent over $S$, and

  2. for every affine opens $U \subset X$, $V \subset Y$, $W \subset S$ with $f(U) \subset W$ and $g(V) \subset W$ the rings $\mathcal{O}_ X(U)$ and $\mathcal{O}_ Y(V)$ are tor independent over $\mathcal{O}_ S(W)$.

  3. there exists an affine open overing $S = \bigcup W_ i$ and for each $i$ affine open coverings $f^{-1}(W_ i) = \bigcup U_{ij}$ and $g^{-1}(W_ i) = \bigcup V_{ik}$ such that the rings $\mathcal{O}_ X(U_{ij})$ and $\mathcal{O}_ Y(V_{ik})$ are tor independent over $\mathcal{O}_ S(W_ i)$ for all $i, j, k$.

Proof. Omitted. Hint: use More on Algebra, Lemma 15.61.6. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FXV. Beware of the difference between the letter 'O' and the digit '0'.