Lemma 13.35.2. Let $\mathcal{T}$ be a triangulated category. Given full subcategories $\mathcal{A}$, $\mathcal{B}$ we have $smd(\mathcal{A}) \star smd(\mathcal{B}) \subset smd(\mathcal{A} \star \mathcal{B})$ and $smd(smd(\mathcal{A}) \star smd(\mathcal{B})) = smd(\mathcal{A} \star \mathcal{B})$.
Proof. Suppose we have a distinguished triangle $A_1 \to X \to B_1$ where $A_1 \oplus A_2 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ and $B_1 \oplus B_2 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B})$. Then we obtain a distinguished triangle $A_1 \oplus A_2 \to A_2 \oplus X \oplus B_2 \to B_1 \oplus B_2$ which proves that $X$ is in $smd(\mathcal{A} \star \mathcal{B})$. This proves the inclusion. The equality follows trivially from this. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)