The Stacks project

13.35 Operations on full subcategories

Let $\mathcal{T}$ be a triangulated category. We will identify full subcategories of $\mathcal{T}$ with subsets of $\mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$. Given full subcategories $\mathcal{A}, \mathcal{B}, \ldots $ we let

  1. $\mathcal{A}[a, b]$ for $-\infty \leq a \leq b \leq \infty $ be the full subcategory of $\mathcal{T}$ consisting of all objects $A[-i]$ with $i \in [a, b] \cap \mathbf{Z}$ with $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ (note the minus sign!),

  2. $smd(\mathcal{A})$ be the full subcategory of $\mathcal{T}$ consisting of all objects which are isomorphic to direct summands of objects of $\mathcal{A}$,

  3. $add(\mathcal{A})$ be the full subcategory of $\mathcal{T}$ consisting of all objects which are isomorphic to finite direct sums of objects of $\mathcal{A}$,

  4. $\mathcal{A} \star \mathcal{B}$ be the full subcategory of $\mathcal{T}$ consisting of all objects $X$ of $\mathcal{T}$ which fit into a distinguished triangle $A \to X \to B$ with $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ and $B \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B})$,

  5. $\mathcal{A}^{\star n} = \mathcal{A} \star \ldots \star \mathcal{A}$ with $n \geq 1$ factors (we will see $\star $ is associative below),

  6. $smd(add(\mathcal{A})^{\star n}) = smd(add(\mathcal{A}) \star \ldots \star add(\mathcal{A}))$ with $n \geq 1$ factors.

If $E$ is an object of $\mathcal{T}$, then we think of $E$ sometimes also as the full subcategory of $\mathcal{T}$ whose single object is $E$. Then we can consider things like $add(E[-1, 2])$ and so on and so forth. We warn the reader that this notation is not universally accepted.

Lemma 13.35.1. Let $\mathcal{T}$ be a triangulated category. Given full subcategories $\mathcal{A}$, $\mathcal{B}$, $\mathcal{C}$ we have $(\mathcal{A} \star \mathcal{B}) \star \mathcal{C} = \mathcal{A} \star (\mathcal{B} \star \mathcal{C})$.

Proof. If we have distinguished triangles $A \to X \to B$ and $X \to Y \to C$ then by Axiom TR4 we have distinguished triangles $A \to Y \to Z$ and $B \to Z \to C$. $\square$

Lemma 13.35.2. Let $\mathcal{T}$ be a triangulated category. Given full subcategories $\mathcal{A}$, $\mathcal{B}$ we have $smd(\mathcal{A}) \star smd(\mathcal{B}) \subset smd(\mathcal{A} \star \mathcal{B})$ and $smd(smd(\mathcal{A}) \star smd(\mathcal{B})) = smd(\mathcal{A} \star \mathcal{B})$.

Proof. Suppose we have a distinguished triangle $A_1 \to X \to B_1$ where $A_1 \oplus A_2 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ and $B_1 \oplus B_2 \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{B})$. Then we obtain a distinguished triangle $A_1 \oplus A_2 \to A_2 \oplus X \oplus B_2 \to B_1 \oplus B_2$ which proves that $X$ is in $smd(\mathcal{A} \star \mathcal{B})$. This proves the inclusion. The equality follows trivially from this. $\square$

Lemma 13.35.3. Let $\mathcal{T}$ be a triangulated category. Given full subcategories $\mathcal{A}$, $\mathcal{B}$ the full subcategories $add(\mathcal{A}) \star add(\mathcal{B})$ and $smd(add(\mathcal{A}))$ are closed under direct sums.

Proof. Namely, if $A \to X \to B$ and $A' \to X' \to B'$ are distinguished triangles and $A, A' \in add(\mathcal{A})$ and $B, B' \in add(\mathcal{B})$ then $A \oplus A' \to X \oplus X' \to B \oplus B'$ is a distinguished triangle with $A \oplus A' \in add(\mathcal{A})$ and $B \oplus B' \in add(\mathcal{B})$. The result for $smd(add(\mathcal{A}))$ is trivial. $\square$

Lemma 13.35.4. Let $\mathcal{T}$ be a triangulated category. Given a full subcategory $\mathcal{A}$ for $n \geq 1$ the subcategory

\[ \mathcal{C}_ n = smd(add(\mathcal{A})^{\star n}) = smd(add(\mathcal{A}) \star \ldots \star add(\mathcal{A})) \]

defined above is a strictly full subcategory of $\mathcal{T}$ closed under direct sums and direct summands and $\mathcal{C}_{n + m} = smd(\mathcal{C}_ n \star \mathcal{C}_ m)$ for all $n, m \geq 1$.

Remark 13.35.5. Let $F : \mathcal{T} \to \mathcal{T}'$ be an exact functor of triangulated categories. Given a full subcategory $\mathcal{A}$ of $\mathcal{T}$ we denote $F(\mathcal{A})$ the full subcategory of $\mathcal{T}'$ whose objects consists of all objects $F(A)$ with $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$. We have

\[ F(\mathcal{A}[a, b]) = F(\mathcal{A})[a, b] \]
\[ F(smd(\mathcal{A})) \subset smd(F(\mathcal{A})), \]
\[ F(add(\mathcal{A})) \subset add(F(\mathcal{A})), \]
\[ F(\mathcal{A} \star \mathcal{B}) \subset F(\mathcal{A}) \star F(\mathcal{B}), \]
\[ F(\mathcal{A}^{\star n}) \subset F(\mathcal{A})^{\star n}. \]

We omit the trivial verifications.

Remark 13.35.6. Let $\mathcal{T}$ be a triangulated category. Given full subcategories $\mathcal{A}_1 \subset \mathcal{A}_2 \subset \mathcal{A}_3 \subset \ldots $ and $\mathcal{B}$ of $\mathcal{T}$ we have

\[ \left(\bigcup \mathcal{A}_ i\right)[a, b] = \bigcup \mathcal{A}_ i[a, b] \]
\[ smd\left(\bigcup \mathcal{A}_ i\right) = \bigcup smd(\mathcal{A}_ i), \]
\[ add\left(\bigcup \mathcal{A}_ i\right) = \bigcup add(\mathcal{A}_ i), \]
\[ \left(\bigcup \mathcal{A}_ i\right) \star \mathcal{B} = \bigcup \mathcal{A}_ i \star \mathcal{B}, \]
\[ \mathcal{B} \star \left(\bigcup \mathcal{A}_ i\right) = \bigcup \mathcal{B} \star \mathcal{A}_ i, \]
\[ \left(\bigcup \mathcal{A}_ i\right)^{\star n} = \bigcup \mathcal{A}_ i^{\star n}. \]

We omit the trivial verifications.

Lemma 13.35.7. Let $\mathcal{A}$ be an abelian category. Let $\mathcal{D} = D(\mathcal{A})$. Let $\mathcal{E} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ be a subset which we view as a subset of $\mathop{\mathrm{Ob}}\nolimits (\mathcal{D})$ also. Let $K$ be an object of $\mathcal{D}$.

  1. Let $b \geq a$ and assume $H^ i(K)$ is zero for $i \not\in [a, b]$ and $H^ i(K) \in \mathcal{E}$ if $i \in [a, b]$. Then $K$ is in $smd(add(\mathcal{E}[a, b])^{\star (b - a + 1)})$.

  2. Let $b \geq a$ and assume $H^ i(K)$ is zero for $i \not\in [a, b]$ and $H^ i(K) \in smd(add(\mathcal{E}))$ if $i \in [a, b]$. Then $K$ is in $smd(add(\mathcal{E}[a, b])^{\star (b - a + 1)})$.

  3. Let $b \geq a$ and assume $K$ can be represented by a complex $K^\bullet $ with $K^ i = 0$ for $i \not\in [a, b]$ and $K^ i \in \mathcal{E}$ for $i \in [a, b]$. Then $K$ is in $smd(add(\mathcal{E}[a, b])^{\star (b - a + 1)})$.

  4. Let $b \geq a$ and assume $K$ can be represented by a complex $K^\bullet $ with $K^ i = 0$ for $i \not\in [a, b]$ and $K^ i \in smd(add(\mathcal{E}))$ for $i \in [a, b]$. Then $K$ is in $smd(add(\mathcal{E}[a, b])^{\star (b - a + 1)})$.

Proof. We will use Lemma 13.35.4 without further mention. We will prove (2) which trivially implies (1). We use induction on $b - a$. If $b - a = 0$, then $K$ is isomorphic to $H^ i(K)[-a]$ in $\mathcal{D}$ and the result is immediate. If $b - a > 0$, then we consider the distinguished triangle

\[ \tau _{\leq b - 1}K^\bullet \to K^\bullet \to K^ b[-b] \]

and we conclude by induction on $b - a$. We omit the proof of (3) and (4). $\square$

Lemma 13.35.8. Let $\mathcal{T}$ be a triangulated category. Let $H : \mathcal{T} \to \mathcal{A}$ be a homological functor to an abelian category $\mathcal{A}$. Let $a \leq b$ and $\mathcal{E} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{T})$ be a subset such that $H^ i(E) = 0$ for $E \in \mathcal{E}$ and $i \not\in [a, b]$. Then for $X \in smd(add(\mathcal{E}[-m, m])^{\star n})$ we have $H^ i(X) = 0$ for $i \not\in [-m + na, m + nb]$.

Proof. Omitted. Pleasant exercise in the definitions. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FX0. Beware of the difference between the letter 'O' and the digit '0'.