Lemma 37.17.1. Let $S$ be a scheme. Let $Y \to X$ be a closed immersion of schemes smooth over $S$. For every $y \in Y$ there exist integers $0 \leq m, n$ and a commutative diagram
\[ \xymatrix{ Y \ar[d] & V \ar[l] \ar[d] \ar[r] & \mathbf{A}^ m_ S \ar[d]^{(a_1, \ldots , a_ m) \mapsto (a_1, \ldots , a_ m, 0 \ldots , 0)} \\ X & U \ar[l] \ar[r]^-\pi & \mathbf{A}^{m + n}_ S } \]
where $U \subset X$ is open, $V = Y \cap U$, $\pi $ is étale, $V = \pi ^{-1}(\mathbf{A}^ m_ S)$, and $y \in V$.
Proof.
The question is local on $X$ hence we may replace $X$ by an open neighbourhood of $y$. Since $Y \to X$ is a regular immersion by Divisors, Lemma 31.22.11 we may assume $X = \mathop{\mathrm{Spec}}(A)$ is affine and there exists a regular sequence $f_1, \ldots , f_ n \in A$ such that $Y = V(f_1, \ldots , f_ n)$. After shrinking $X$ (and hence $Y$) further we may assume there exists an étale morphism $Y \to \mathbf{A}^ m_ S$, see Morphisms, Lemma 29.36.20. Let $\overline{g}_1, \ldots , \overline{g}_ m$ in $\mathcal{O}_ Y(Y)$ be the coordinate functions of this étale morphism. Choose lifts $g_1, \ldots , g_ m \in A$ of these functions and consider the morphism
\[ (g_1, \ldots , g_ m, f_1, \ldots , f_ n) : X \longrightarrow \mathbf{A}^{m + n}_ S \]
over $S$. This is a morphism of schemes locally of finite presentation over $S$ and hence is locally of finite presentation (Morphisms, Lemma 29.21.11). The restriction of this morphism to $\mathbf{A}^ m_ S \subset \mathbf{A}^{m + n}_ S$ is étale by construction. Thus, in order to show that $X \to \mathbf{A}^{m + n}_ S$ is étale at $y$ it suffices to show that $X \to \mathbf{A}^{m + n}_ S$ is flat at $y$, see Morphisms, Lemma 29.36.15. Let $s \in S$ be the image of $y$. It suffices to check that $X_ s \to \mathbf{A}^{m + n}_ s$ is flat at $y$, see Theorem 37.16.2. Let $z \in \mathbf{A}^{m + n}_ s$ be the image of $y$. The local ring map
\[ \mathcal{O}_{\mathbf{A}^{m + n}_ s, z} \longrightarrow \mathcal{O}_{X_ s, y} \]
is flat by Algebra, Lemma 10.128.1. Namely, schemes smooth over fields are regular and regular rings are Cohen-Macaulay, see Varieties, Lemma 33.25.3 and Algebra, Lemma 10.106.3. Thus both source and target are regular local rings (and hence CM). The source and target have the same dimension: namely, we have $\dim (\mathcal{O}_{Y_ s, y}) = \dim (\mathcal{O}_{\mathbf{A}^ m_ s, z})$ by More on Algebra, Lemma 15.44.2, we have $\dim (\mathcal{O}_{\mathbf{A}^{m + n}_ s, z}) = n + \dim (\mathcal{O}_{\mathbf{A}^ m_ s, z})$, and we have $\dim (\mathcal{O}_{X_ s, y}) = n + \dim (\mathcal{O}_{Y_ s, y})$ because $\mathcal{O}_{Y_ s, y}$ is the quotient of $\mathcal{O}_{X_ s, y}$ by the regular sequence $f_1, \ldots , f_ n$ of length $n$ (see Divisors, Remark 31.22.5). Finally, the fibre ring of the displayed arrow is finite over $\kappa (z)$ since $Y_ s \to \mathbf{A}^ m_ s$ is étale at $y$. This finishes the proof.
$\square$
Comments (0)