The Stacks project

Remark 22.13.7. Let $R$ be a ring. Let $A$ be a differential graded $R$-algebra. Let $M^\bullet $ and $N^\bullet $ be complexes of $R$-modules. Let $k \in \mathbf{Z}$ and consider the isomorphism

\[ \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , N^\bullet )[-k] \longrightarrow \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet [k], N^\bullet ) \]

of complexes of $R$-modules defined in More on Algebra, Item (18). If $M^\bullet $ has the structure of a left, resp. right differential graded $A$-module, then this is a map of right, resp. left differential graded $A$-modules (with the module structures as defined in this section). We omit the verification; we warn the reader that the $A$-module structure on the shift of a left graded $A$-module is defined using a sign, see Definition 22.11.3.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FQ9. Beware of the difference between the letter 'O' and the digit '0'.