There is a canonical identification
\[ \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , K^\bullet )[a - b] \to \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet [b], K^\bullet [a]) \]which uses signs. It is defined as the map whose corresponding shifted map
\[ \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet , K^\bullet ) \to \mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet [b], K^\bullet [a])[b - a] \]uses the sign $(-1)^{nb}$ on the module $\mathop{\mathrm{Hom}}\nolimits _ R(M^{-q}, K^ p)$ with $p + q = n$. Namely, if $f \in \mathop{\mathrm{Hom}}\nolimits ^ n(M^\bullet , K^\bullet )$ then
\[ d(f) = d_ K \circ f - (-1)^ n f \circ d_ M \]on the source, whereas on the target $f$ lies in $\left(\mathop{\mathrm{Hom}}\nolimits ^\bullet (M^\bullet [b], K^\bullet [a])[b - a]\right)^ n = \mathop{\mathrm{Hom}}\nolimits ^{n + b -a}(M^\bullet [b], K^\bullet [a])$ and hence we get
\begin{align*} d(f) & = (-1)^{b - a} \left(d_{K[a]} \circ f - (-1)^{n + b - a} f \circ d_{M[b]}\right) \\ & = (-1)^{b - a} \left((-1)^ a d_ K \circ f - (-1)^{n + b - a} f \circ (-1)^ b d_ M \right) \\ & = (-1)^ b d_ K \circ f - (-1)^{n + b} f \circ d_ M \end{align*}and one sees that the chosen sign of $(-1)^{nb}$ in degree $n$ produces a map of complexes for these differentials.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)